3.544 \(\int \frac{d+e x^2}{(a+b \cosh ^{-1}(c x))^2} \, dx\)

Optimal. Leaf size=257 \[ \frac{e \cosh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a+b \cosh ^{-1}(c x)}{b}\right )}{4 b^2 c^3}+\frac{3 e \cosh \left (\frac{3 a}{b}\right ) \text{Chi}\left (\frac{3 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{4 b^2 c^3}-\frac{e \sinh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a+b \cosh ^{-1}(c x)}{b}\right )}{4 b^2 c^3}-\frac{3 e \sinh \left (\frac{3 a}{b}\right ) \text{Shi}\left (\frac{3 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{4 b^2 c^3}+\frac{d \cosh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a+b \cosh ^{-1}(c x)}{b}\right )}{b^2 c}-\frac{d \sinh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a+b \cosh ^{-1}(c x)}{b}\right )}{b^2 c}-\frac{d \sqrt{c x-1} \sqrt{c x+1}}{b c \left (a+b \cosh ^{-1}(c x)\right )}-\frac{e x^2 \sqrt{c x-1} \sqrt{c x+1}}{b c \left (a+b \cosh ^{-1}(c x)\right )} \]

[Out]

-((d*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(b*c*(a + b*ArcCosh[c*x]))) - (e*x^2*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(b*c*(a
+ b*ArcCosh[c*x])) + (d*Cosh[a/b]*CoshIntegral[(a + b*ArcCosh[c*x])/b])/(b^2*c) + (e*Cosh[a/b]*CoshIntegral[(a
 + b*ArcCosh[c*x])/b])/(4*b^2*c^3) + (3*e*Cosh[(3*a)/b]*CoshIntegral[(3*(a + b*ArcCosh[c*x]))/b])/(4*b^2*c^3)
- (d*Sinh[a/b]*SinhIntegral[(a + b*ArcCosh[c*x])/b])/(b^2*c) - (e*Sinh[a/b]*SinhIntegral[(a + b*ArcCosh[c*x])/
b])/(4*b^2*c^3) - (3*e*Sinh[(3*a)/b]*SinhIntegral[(3*(a + b*ArcCosh[c*x]))/b])/(4*b^2*c^3)

________________________________________________________________________________________

Rubi [A]  time = 0.595345, antiderivative size = 249, normalized size of antiderivative = 0.97, number of steps used = 15, number of rules used = 7, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.389, Rules used = {5707, 5656, 5781, 3303, 3298, 3301, 5666} \[ \frac{e \cosh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\cosh ^{-1}(c x)\right )}{4 b^2 c^3}+\frac{3 e \cosh \left (\frac{3 a}{b}\right ) \text{Chi}\left (\frac{3 a}{b}+3 \cosh ^{-1}(c x)\right )}{4 b^2 c^3}-\frac{e \sinh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\cosh ^{-1}(c x)\right )}{4 b^2 c^3}-\frac{3 e \sinh \left (\frac{3 a}{b}\right ) \text{Shi}\left (\frac{3 a}{b}+3 \cosh ^{-1}(c x)\right )}{4 b^2 c^3}+\frac{d \cosh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\cosh ^{-1}(c x)\right )}{b^2 c}-\frac{d \sinh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\cosh ^{-1}(c x)\right )}{b^2 c}-\frac{d \sqrt{c x-1} \sqrt{c x+1}}{b c \left (a+b \cosh ^{-1}(c x)\right )}-\frac{e x^2 \sqrt{c x-1} \sqrt{c x+1}}{b c \left (a+b \cosh ^{-1}(c x)\right )} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x^2)/(a + b*ArcCosh[c*x])^2,x]

[Out]

-((d*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(b*c*(a + b*ArcCosh[c*x]))) - (e*x^2*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(b*c*(a
+ b*ArcCosh[c*x])) + (d*Cosh[a/b]*CoshIntegral[a/b + ArcCosh[c*x]])/(b^2*c) + (e*Cosh[a/b]*CoshIntegral[a/b +
ArcCosh[c*x]])/(4*b^2*c^3) + (3*e*Cosh[(3*a)/b]*CoshIntegral[(3*a)/b + 3*ArcCosh[c*x]])/(4*b^2*c^3) - (d*Sinh[
a/b]*SinhIntegral[a/b + ArcCosh[c*x]])/(b^2*c) - (e*Sinh[a/b]*SinhIntegral[a/b + ArcCosh[c*x]])/(4*b^2*c^3) -
(3*e*Sinh[(3*a)/b]*SinhIntegral[(3*a)/b + 3*ArcCosh[c*x]])/(4*b^2*c^3)

Rule 5707

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a
 + b*ArcCosh[c*x])^n, (d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && NeQ[c^2*d + e, 0] && IntegerQ[p
] && (p > 0 || IGtQ[n, 0])

Rule 5656

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(a + b*ArcCosh[c
*x])^(n + 1))/(b*c*(n + 1)), x] - Dist[c/(b*(n + 1)), Int[(x*(a + b*ArcCosh[c*x])^(n + 1))/(Sqrt[-1 + c*x]*Sqr
t[1 + c*x]), x], x] /; FreeQ[{a, b, c}, x] && LtQ[n, -1]

Rule 5781

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_
.), x_Symbol] :> Dist[(-(d1*d2))^p/c^(m + 1), Subst[Int[(a + b*x)^n*Cosh[x]^m*Sinh[x]^(2*p + 1), x], x, ArcCos
h[c*x]], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IntegerQ[p
+ 1/2] && GtQ[p, -1] && IGtQ[m, 0] && (GtQ[d1, 0] && LtQ[d2, 0])

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3298

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(I*SinhIntegral[(c*f*fz)
/d + f*fz*x])/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3301

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[(c*f*fz)/d
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rule 5666

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[(x^m*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(
a + b*ArcCosh[c*x])^(n + 1))/(b*c*(n + 1)), x] + Dist[1/(b*c^(m + 1)*(n + 1)), Subst[Int[ExpandTrigReduce[(a +
 b*x)^(n + 1)*Cosh[x]^(m - 1)*(m - (m + 1)*Cosh[x]^2), x], x], x, ArcCosh[c*x]], x] /; FreeQ[{a, b, c}, x] &&
IGtQ[m, 0] && GeQ[n, -2] && LtQ[n, -1]

Rubi steps

\begin{align*} \int \frac{d+e x^2}{\left (a+b \cosh ^{-1}(c x)\right )^2} \, dx &=\int \left (\frac{d}{\left (a+b \cosh ^{-1}(c x)\right )^2}+\frac{e x^2}{\left (a+b \cosh ^{-1}(c x)\right )^2}\right ) \, dx\\ &=d \int \frac{1}{\left (a+b \cosh ^{-1}(c x)\right )^2} \, dx+e \int \frac{x^2}{\left (a+b \cosh ^{-1}(c x)\right )^2} \, dx\\ &=-\frac{d \sqrt{-1+c x} \sqrt{1+c x}}{b c \left (a+b \cosh ^{-1}(c x)\right )}-\frac{e x^2 \sqrt{-1+c x} \sqrt{1+c x}}{b c \left (a+b \cosh ^{-1}(c x)\right )}+\frac{(c d) \int \frac{x}{\sqrt{-1+c x} \sqrt{1+c x} \left (a+b \cosh ^{-1}(c x)\right )} \, dx}{b}-\frac{e \operatorname{Subst}\left (\int \left (-\frac{\cosh (x)}{4 (a+b x)}-\frac{3 \cosh (3 x)}{4 (a+b x)}\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{b c^3}\\ &=-\frac{d \sqrt{-1+c x} \sqrt{1+c x}}{b c \left (a+b \cosh ^{-1}(c x)\right )}-\frac{e x^2 \sqrt{-1+c x} \sqrt{1+c x}}{b c \left (a+b \cosh ^{-1}(c x)\right )}+\frac{d \operatorname{Subst}\left (\int \frac{\cosh (x)}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{b c}+\frac{e \operatorname{Subst}\left (\int \frac{\cosh (x)}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{4 b c^3}+\frac{(3 e) \operatorname{Subst}\left (\int \frac{\cosh (3 x)}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{4 b c^3}\\ &=-\frac{d \sqrt{-1+c x} \sqrt{1+c x}}{b c \left (a+b \cosh ^{-1}(c x)\right )}-\frac{e x^2 \sqrt{-1+c x} \sqrt{1+c x}}{b c \left (a+b \cosh ^{-1}(c x)\right )}+\frac{\left (d \cosh \left (\frac{a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cosh \left (\frac{a}{b}+x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{b c}+\frac{\left (e \cosh \left (\frac{a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cosh \left (\frac{a}{b}+x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{4 b c^3}+\frac{\left (3 e \cosh \left (\frac{3 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cosh \left (\frac{3 a}{b}+3 x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{4 b c^3}-\frac{\left (d \sinh \left (\frac{a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sinh \left (\frac{a}{b}+x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{b c}-\frac{\left (e \sinh \left (\frac{a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sinh \left (\frac{a}{b}+x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{4 b c^3}-\frac{\left (3 e \sinh \left (\frac{3 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sinh \left (\frac{3 a}{b}+3 x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{4 b c^3}\\ &=-\frac{d \sqrt{-1+c x} \sqrt{1+c x}}{b c \left (a+b \cosh ^{-1}(c x)\right )}-\frac{e x^2 \sqrt{-1+c x} \sqrt{1+c x}}{b c \left (a+b \cosh ^{-1}(c x)\right )}+\frac{d \cosh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\cosh ^{-1}(c x)\right )}{b^2 c}+\frac{e \cosh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\cosh ^{-1}(c x)\right )}{4 b^2 c^3}+\frac{3 e \cosh \left (\frac{3 a}{b}\right ) \text{Chi}\left (\frac{3 a}{b}+3 \cosh ^{-1}(c x)\right )}{4 b^2 c^3}-\frac{d \sinh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\cosh ^{-1}(c x)\right )}{b^2 c}-\frac{e \sinh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\cosh ^{-1}(c x)\right )}{4 b^2 c^3}-\frac{3 e \sinh \left (\frac{3 a}{b}\right ) \text{Shi}\left (\frac{3 a}{b}+3 \cosh ^{-1}(c x)\right )}{4 b^2 c^3}\\ \end{align*}

Mathematica [A]  time = 1.52872, size = 225, normalized size = 0.88 \[ \frac{4 c^2 d \left (\cosh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\cosh ^{-1}(c x)\right )-\sinh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\cosh ^{-1}(c x)\right )\right )-\frac{4 b c^2 \sqrt{\frac{c x-1}{c x+1}} (c x+1) \left (d+e x^2\right )}{a+b \cosh ^{-1}(c x)}+3 e \left (3 \cosh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\cosh ^{-1}(c x)\right )+\cosh \left (\frac{3 a}{b}\right ) \text{Chi}\left (3 \left (\frac{a}{b}+\cosh ^{-1}(c x)\right )\right )-3 \sinh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\cosh ^{-1}(c x)\right )-\sinh \left (\frac{3 a}{b}\right ) \text{Shi}\left (3 \left (\frac{a}{b}+\cosh ^{-1}(c x)\right )\right )\right )-8 e \cosh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\cosh ^{-1}(c x)\right )+8 e \sinh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\cosh ^{-1}(c x)\right )}{4 b^2 c^3} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(d + e*x^2)/(a + b*ArcCosh[c*x])^2,x]

[Out]

((-4*b*c^2*Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x)*(d + e*x^2))/(a + b*ArcCosh[c*x]) - 8*e*Cosh[a/b]*CoshIntegral
[a/b + ArcCosh[c*x]] + 8*e*Sinh[a/b]*SinhIntegral[a/b + ArcCosh[c*x]] + 4*c^2*d*(Cosh[a/b]*CoshIntegral[a/b +
ArcCosh[c*x]] - Sinh[a/b]*SinhIntegral[a/b + ArcCosh[c*x]]) + 3*e*(3*Cosh[a/b]*CoshIntegral[a/b + ArcCosh[c*x]
] + Cosh[(3*a)/b]*CoshIntegral[3*(a/b + ArcCosh[c*x])] - 3*Sinh[a/b]*SinhIntegral[a/b + ArcCosh[c*x]] - Sinh[(
3*a)/b]*SinhIntegral[3*(a/b + ArcCosh[c*x])]))/(4*b^2*c^3)

________________________________________________________________________________________

Maple [A]  time = 0.144, size = 465, normalized size = 1.8 \begin{align*}{\frac{1}{c} \left ({\frac{e}{8\,b{c}^{2} \left ( a+b{\rm arccosh} \left (cx\right ) \right ) } \left ( -4\,\sqrt{cx+1}\sqrt{cx-1}{x}^{2}{c}^{2}+\sqrt{cx-1}\sqrt{cx+1}+4\,{c}^{3}{x}^{3}-3\,cx \right ) }-{\frac{3\,e}{8\,{c}^{2}{b}^{2}}{{\rm e}^{3\,{\frac{a}{b}}}}{\it Ei} \left ( 1,3\,{\rm arccosh} \left (cx\right )+3\,{\frac{a}{b}} \right ) }-{\frac{e}{8\,b{c}^{2} \left ( a+b{\rm arccosh} \left (cx\right ) \right ) } \left ( 4\,{c}^{3}{x}^{3}-3\,cx+4\,\sqrt{cx+1}\sqrt{cx-1}{x}^{2}{c}^{2}-\sqrt{cx-1}\sqrt{cx+1} \right ) }-{\frac{3\,e}{8\,{c}^{2}{b}^{2}}{{\rm e}^{-3\,{\frac{a}{b}}}}{\it Ei} \left ( 1,-3\,{\rm arccosh} \left (cx\right )-3\,{\frac{a}{b}} \right ) }+{\frac{d}{2\,b \left ( a+b{\rm arccosh} \left (cx\right ) \right ) } \left ( -\sqrt{cx-1}\sqrt{cx+1}+cx \right ) }+{\frac{e}{8\,b{c}^{2} \left ( a+b{\rm arccosh} \left (cx\right ) \right ) } \left ( -\sqrt{cx-1}\sqrt{cx+1}+cx \right ) }-{\frac{d}{2\,{b}^{2}}{{\rm e}^{{\frac{a}{b}}}}{\it Ei} \left ( 1,{\rm arccosh} \left (cx\right )+{\frac{a}{b}} \right ) }-{\frac{e}{8\,{c}^{2}{b}^{2}}{{\rm e}^{{\frac{a}{b}}}}{\it Ei} \left ( 1,{\rm arccosh} \left (cx\right )+{\frac{a}{b}} \right ) }-{\frac{d}{2\,b \left ( a+b{\rm arccosh} \left (cx\right ) \right ) } \left ( cx+\sqrt{cx-1}\sqrt{cx+1} \right ) }-{\frac{e}{8\,b{c}^{2} \left ( a+b{\rm arccosh} \left (cx\right ) \right ) } \left ( cx+\sqrt{cx-1}\sqrt{cx+1} \right ) }-{\frac{d}{2\,{b}^{2}}{{\rm e}^{-{\frac{a}{b}}}}{\it Ei} \left ( 1,-{\rm arccosh} \left (cx\right )-{\frac{a}{b}} \right ) }-{\frac{e}{8\,{c}^{2}{b}^{2}}{{\rm e}^{-{\frac{a}{b}}}}{\it Ei} \left ( 1,-{\rm arccosh} \left (cx\right )-{\frac{a}{b}} \right ) } \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)/(a+b*arccosh(c*x))^2,x)

[Out]

1/c*(1/8*(-4*(c*x+1)^(1/2)*(c*x-1)^(1/2)*x^2*c^2+(c*x-1)^(1/2)*(c*x+1)^(1/2)+4*c^3*x^3-3*c*x)*e/c^2/b/(a+b*arc
cosh(c*x))-3/8/c^2*e/b^2*exp(3*a/b)*Ei(1,3*arccosh(c*x)+3*a/b)-1/8/c^2*e/b*(4*c^3*x^3-3*c*x+4*(c*x+1)^(1/2)*(c
*x-1)^(1/2)*x^2*c^2-(c*x-1)^(1/2)*(c*x+1)^(1/2))/(a+b*arccosh(c*x))-3/8/c^2*e/b^2*exp(-3*a/b)*Ei(1,-3*arccosh(
c*x)-3*a/b)+1/2*(-(c*x-1)^(1/2)*(c*x+1)^(1/2)+c*x)*d/b/(a+b*arccosh(c*x))+1/8*(-(c*x-1)^(1/2)*(c*x+1)^(1/2)+c*
x)*e/c^2/b/(a+b*arccosh(c*x))-1/2/b^2*exp(a/b)*Ei(1,arccosh(c*x)+a/b)*d-1/8/c^2/b^2*exp(a/b)*Ei(1,arccosh(c*x)
+a/b)*e-1/2/b*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))/(a+b*arccosh(c*x))*d-1/8/c^2/b*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2
))/(a+b*arccosh(c*x))*e-1/2/b^2*exp(-a/b)*Ei(1,-arccosh(c*x)-a/b)*d-1/8/c^2/b^2*exp(-a/b)*Ei(1,-arccosh(c*x)-a
/b)*e)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{c^{3} e x^{5} +{\left (c^{3} d - c e\right )} x^{3} - c d x +{\left (c^{2} e x^{4} +{\left (c^{2} d - e\right )} x^{2} - d\right )} \sqrt{c x + 1} \sqrt{c x - 1}}{a b c^{3} x^{2} + \sqrt{c x + 1} \sqrt{c x - 1} a b c^{2} x - a b c +{\left (b^{2} c^{3} x^{2} + \sqrt{c x + 1} \sqrt{c x - 1} b^{2} c^{2} x - b^{2} c\right )} \log \left (c x + \sqrt{c x + 1} \sqrt{c x - 1}\right )} + \int \frac{3 \, c^{5} e x^{6} +{\left (c^{5} d - 6 \, c^{3} e\right )} x^{4} +{\left (3 \, c^{3} e x^{4} +{\left (c^{3} d - c e\right )} x^{2} + c d\right )}{\left (c x + 1\right )}{\left (c x - 1\right )} -{\left (2 \, c^{3} d - 3 \, c e\right )} x^{2} +{\left (6 \, c^{4} e x^{5} +{\left (2 \, c^{4} d - 7 \, c^{2} e\right )} x^{3} -{\left (c^{2} d - 2 \, e\right )} x\right )} \sqrt{c x + 1} \sqrt{c x - 1} + c d}{a b c^{5} x^{4} +{\left (c x + 1\right )}{\left (c x - 1\right )} a b c^{3} x^{2} - 2 \, a b c^{3} x^{2} + a b c + 2 \,{\left (a b c^{4} x^{3} - a b c^{2} x\right )} \sqrt{c x + 1} \sqrt{c x - 1} +{\left (b^{2} c^{5} x^{4} +{\left (c x + 1\right )}{\left (c x - 1\right )} b^{2} c^{3} x^{2} - 2 \, b^{2} c^{3} x^{2} + b^{2} c + 2 \,{\left (b^{2} c^{4} x^{3} - b^{2} c^{2} x\right )} \sqrt{c x + 1} \sqrt{c x - 1}\right )} \log \left (c x + \sqrt{c x + 1} \sqrt{c x - 1}\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(a+b*arccosh(c*x))^2,x, algorithm="maxima")

[Out]

-(c^3*e*x^5 + (c^3*d - c*e)*x^3 - c*d*x + (c^2*e*x^4 + (c^2*d - e)*x^2 - d)*sqrt(c*x + 1)*sqrt(c*x - 1))/(a*b*
c^3*x^2 + sqrt(c*x + 1)*sqrt(c*x - 1)*a*b*c^2*x - a*b*c + (b^2*c^3*x^2 + sqrt(c*x + 1)*sqrt(c*x - 1)*b^2*c^2*x
 - b^2*c)*log(c*x + sqrt(c*x + 1)*sqrt(c*x - 1))) + integrate((3*c^5*e*x^6 + (c^5*d - 6*c^3*e)*x^4 + (3*c^3*e*
x^4 + (c^3*d - c*e)*x^2 + c*d)*(c*x + 1)*(c*x - 1) - (2*c^3*d - 3*c*e)*x^2 + (6*c^4*e*x^5 + (2*c^4*d - 7*c^2*e
)*x^3 - (c^2*d - 2*e)*x)*sqrt(c*x + 1)*sqrt(c*x - 1) + c*d)/(a*b*c^5*x^4 + (c*x + 1)*(c*x - 1)*a*b*c^3*x^2 - 2
*a*b*c^3*x^2 + a*b*c + 2*(a*b*c^4*x^3 - a*b*c^2*x)*sqrt(c*x + 1)*sqrt(c*x - 1) + (b^2*c^5*x^4 + (c*x + 1)*(c*x
 - 1)*b^2*c^3*x^2 - 2*b^2*c^3*x^2 + b^2*c + 2*(b^2*c^4*x^3 - b^2*c^2*x)*sqrt(c*x + 1)*sqrt(c*x - 1))*log(c*x +
 sqrt(c*x + 1)*sqrt(c*x - 1))), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{e x^{2} + d}{b^{2} \operatorname{arcosh}\left (c x\right )^{2} + 2 \, a b \operatorname{arcosh}\left (c x\right ) + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(a+b*arccosh(c*x))^2,x, algorithm="fricas")

[Out]

integral((e*x^2 + d)/(b^2*arccosh(c*x)^2 + 2*a*b*arccosh(c*x) + a^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{d + e x^{2}}{\left (a + b \operatorname{acosh}{\left (c x \right )}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)/(a+b*acosh(c*x))**2,x)

[Out]

Integral((d + e*x**2)/(a + b*acosh(c*x))**2, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{e x^{2} + d}{{\left (b \operatorname{arcosh}\left (c x\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(a+b*arccosh(c*x))^2,x, algorithm="giac")

[Out]

integrate((e*x^2 + d)/(b*arccosh(c*x) + a)^2, x)